Quantum dot decorated aligned carbon nanotube bundles for a performance enhanced photoswitch.

نویسندگان

  • Sivaramapanicker Sreejith
  • Reinack Hansen
  • Hrishikesh Joshi
  • R Govindan Kutty
  • Zheng Liu
  • Lianxi Zheng
  • Jinglei Yang
  • Yanli Zhao
چکیده

Photoactive materials that are triggered by the irradiation of light to generate an electrical response provide an ecofriendly platform to afford efficient power sources and switches. A chemical assembly of well-known elements with aligned carbon nanotube bundles is reported here, which was employed to form an efficient photo-induced charge transfer device. The primary elements of this device are ultra-long multi-walled carbon nanotube (MWCNT) bundles, polyaniline (PANI) thin film coating, and CdSe quantum dots (QDs). Highly ordered and horizontally aligned MWCNT bundles were coated with PANI to enhance charge transfer properties of active QDs in this platform. The obtained device (CdSe-MWCNT@PANI) constructed on a silicon base exhibits highly efficient power conversion capabilities owing to the aligned MWCNT bundle assisted enhanced charge transport pathways generated within the device. The device also shows a short circuit current density (Jsc) of 9.81 mA cm(-2) and an open circuit voltage (Voc) of 0.46 V. The power conversion efficiency (PCE) of the device is 5.41%, and the current response is quite stable, highly responsive, and reproducible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A layer-nanostructured assembly of PbS quantum dot/multiwalled carbon nanotube for a high-performance photoswitch

A layered nanostructure of a lead sulfide (PbS) quantum dot (QD)/multi-walled carbon nanotube (MWNT) hybrid was prepared by the electrostatic assembly after the phase transfer of PbS QDs from an organic to an aqueous phase. Well-crystallized PbS QDs with a narrow diameter (5.5 nm) was mono-dispersed on the sidewalls of MWNT by the electrostatic adsorption. Near-infrared absorption of PbS/MWNT n...

متن کامل

Anisotropic Decay Dynamics of Photoexcited Aligned Carbon Nanotube Bundles

We have performed polarization-dependent ultrafast pump-probe spectroscopy of a film of aligned single-walled carbon nanotube bundles. By taking into account imperfect nanotube alignment as well as anisotropic absorption cross sections, we quantitatively determined distinctly different photobleaching dynamics for polarizations parallel and perpendicular to the tube axis. For perpendicular polar...

متن کامل

Growing and Etching MoS₂ on Carbon Nanotube Film for Enhanced Electrochemical Performance.

In this work we directly synthesized molybdenum disulfide (MoS₂) nanosheets on carbon nanotube film (MoS₂@CNT) via a two-step chemical vapor deposition method (CVD). By etching the obtained MoS₂@CNT into 10% wt HNO₃, the morphology of MoS₂ decorated on CNT bundles was modulated, resulting in more catalytic active MoS₂ edges being exposed for significantly enhanced electrochemical performance. O...

متن کامل

Characteristics of 100 nm-Dot Array of Vertically Aligned Carbon Nanotube Field Emitters Fabricated by DC Plasma Enhanced Chemical Vapor Deposition

Vertically aligned carbon nanotube field emitters with 100 nm-dot array structure were fabricated using dc plasma enhanced chemical vapor deposition, where dot catalysts were patterned by electron beam lithography. In order to optimize the growth condition of VACNTs, the morphologies of CNTs were investigated by changing gas ratio between NH3 and C2H2 gases. It was found that morphology of CNTs...

متن کامل

Superconducting tunneling spectroscopy of a carbon nanotube quantum dot

We report results on superconducting tunneling spectroscopy of a carbon nanotube quantum dot. Using a three-probe technique that includes a superconducting tunnel probe, we map out changes in conductance due to band structure, excited states, and end-to-end bias. The superconducting probe allows us to observe enhanced spectroscopic features, such as robust signals of both elastic and inelastic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 16  شماره 

صفحات  -

تاریخ انتشار 2016